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Many-Orbital Cluster Expansion for the Exchange-Repulsion 
Energy in the Interaction of Closed-Shell Systems 

The Neon-Neon Interaction 
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The energy of exchange repulsion between two closed-shell systems described 
by determinantal wave functions has been represented as a sum of contributions 
arising from the interaction of two, three and four orbitals at a time. These 
contributions have been calculated for the interaction of two neon atoms. It  
has been found that in the van der Waals minimum region the two-orbital 
components are of secondary importance and that about 90% of the total 
exchange energy originates from the three-orbital interactions of  L-shell 
electrons. The four-orbital as well as the double-exchange terms have been 
found negligible. The approximate algorithms for evaluation of the exchange 
repulsion energy have been tested and discussed. 
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1. Introduction 

Since the pioneering works of  Heitler, London and Slater [1-3] it has been known 
that the net force acting between atoms and molecules is a result of  a balance of 
two physically different effects: the long-range attraction and the short-range 
repulsion. The former effect can be given more or less classical interpretation and its 
contribution to the interaction energy can easily be related to molecular properties 
such as dipole and higher multipole moments, static and dynamic polarizabilities, 
hyperpolarizabilities, etc. [4]. Presently, the theory of the long-range interactions 
is well advanced and, with a proper use of  experimental information, can be 
effectively applied to study interactions of  large polyatomic molecules [5]. On 
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the contrary, the energy of the short-range repulsion, as a purely quantum mechan- 
ical exchange effect, cannot be related to any experimentally known property of 
the interacting molecules and a reliable information about this energy can be 
obtained only from ab init io quantum mechanical calculations. As a consequence, 
very little is known about the actual magnitude of the exchange repulsion between 
large and medium size molecules. 

In practice, the repulsive effect is usually obtained either variationally, using 
supermolecular LCAO MO or SCF methods, or within the symmetry-adapted 
perturbation treatment as the first-order exchange correction, evaluated using 
SCF wave functions for isolated systems. The supermolecular SCF approach 
might be considered advantageous since it automatically allows for deformation of 
orbitals, resulting from induction interaction, the effect which appears in the second 
and higher orders of the perturbation theory. However, for larger systems it is 
really difficult to get accurate energies in this way 1 because of the basis set super- 
position error, which may be sometimes larger than the interaction energy itself 
[6]. Moreover, the supermolecular SCF method as a rather brute-force approach 
cannot be effectively applied to large polyatomic molecules. From this point of 
view, the perturbation theory approach seems to be superior, since it permits the 
introduction of simple and well defined approximate algorithms for the exchange 
energy, which can be extended to larger systems. Recently, Murrell and Varandas 
[10] proposed such a simplified method for the calculation of the first-order ex- 
change repulsion energy. This method consists in using properly selected maximum 
overlap hybrids rather than all occupied orbitals. In the present paper we propose 
another method of simplifying calculations of the first-order exchange energy for 
the interaction of closed-shell systems. The method employs the idea of the many- 
orbital cluster expansion set forth in Ref. [11]. The advantage of the cluster repre- 
sentation results from the fact that it offers a possibility of computing the exchange 
energy as a sum of two- three-, and four-orbital contributions. Neglecting the many- 
orbital contributions resulting from the interaction of weakly overlapping orbitals 
we obtain well defined and well controlled approximations to the exchange re- 
pulsion energy. In the present paper we test these possibilities in the case of the 
Ne-Ne interaction. 

2. Many-Orbital Cluster Expansion of the First-Order Exchange Energy 

Let us consider the interaction of two closed-shell systems, A and B, and let ~b A 
and qbB denote the determinantal wave functions of these systems. The first-order 
energy in the symmetry-adapted perturbation theory is defined: 

i n t =  < ~ A % l d l ~ % )  ' (1) 

1 In fact, even for the relatively small Ne2 system, three values of the SCF interaction energy 
at R = 6 a.u. (van der Waals minimum region) pretend to be in error by a few percent: 
0.44 ( -4)  [7], 0.56 ( -4)  [8] and 0.63 ( -4)  a.u. [9]. 
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where ~ is the antisymmetrizer for all electrons in the complex AB and V is the 
operator ofintermolecular interaction. Vcan be conveniently expressed in the form 

V = ~. ~. v(st), (2) 
s~A t~B 

where v(st) is a generalized two-electron potential [11]. For the interaction of two 
neutral atoms it is defined 

v(st) = R -1 - rT~t 1 - rL  x + r~ 1 

where R is the internuclear separation and rat, rB~ and r~t are distances between the 
nuclei and electrons specified by the subscripts A, B, t and s. 

The first-order energy (1) is usually represented as a sum of Coulomb and exchange 
contributions 

Ei(1) ~7(1) 
nt = Q + ~oxoh, (3) 

where Q = (~bAqbB] V] qbaq~B) and the first-order exchange, E~h,  is defined essenti- 
ally as a difference E(~ - Q. The main, single exchange part of E ~ h  is given by 

Eexoh = (OAq%l V ( ~ -  (~))[qbAq~B), (4) 

where 

s e a  t e B  

is the sum of permutation operators Pst interchanging the coordinates ofsth and tth 
electrons, and ( ~ )  is calculated with @A" @B [11]. The explicit expression for the 
difference between E ~ h  and Eoxoh can be found in Ref. [12]. The first who expressed 
E, xoh in terms of orbitals were Williams, Schaad and Murrell [13]. Their result can 
be written in the form of a cluster expansion which is transparent and simple to 
interpret: 

Eexoh = ~  ~ e ( i [ j )  + ~ ~ e ( i k ] j )  + ~ ~ e(i]j l)  + ~ ~ e( ikJj l ) ,  
iEA j s B  i,lCEA jEB iSA j , l~B i,lr j,16B 

i<Ic j < l  i< tc  j < l  

(6) 

where, for instance, the symbol e(ik I J) indicates that the corresponding three- 
orbital contribution depends only on the ith and kth orbitals of system A andj th  
orbital of system B. The contributions e(ik I J), ~(i l fl) and e(ik [fl) are defined to 
be symmetric with respect to the interchange of indices i and k or l and j and can 
be obtained by a symmetrization of the "primitive" quantities e(ik I J), ~(ilfl) and 
~(ik I fl): 

e(ik I J) = e(ik I j )  + g(ki I J) (7) 

or 

~(ik Ifl) = ~(ik [ f l)  + ~(ki Ifl) + e(ik l lj) + ~(ki [ lj). (8) 
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The explicit expressions for the many-orbital contributions to Eexoh are as follows: 

e(i I J) = - 2(aibjlv12[bja~) + 6(a,bj[v~2la~bj)S~ 

- 2(a~bjlv~2lbjbj)S~ s - 2(a~bjlv~2la~a,)S~y, (9) 

~(ik I J) = 2(aibylv12(1 - 2P~2)]akal)Skj 

+ 2(a~bylvlzlakby)SkyS~y + 4(a~bylv~2la~by)S~y, (10) 

~(ik ] j l )  = - 2(a,bAv~2lakbz)S~zSky 

+ 4(a,by[Vl2[a~b,)SkzSky + 4(a,by[v~2[akby)SkzS~z, (11) 

where the occupied orbitals of systems A and B are denoted by a ,  a~ and by, bz 
respectively, S~y = (a~ ] by), v~2 = v(12) and the expression for ~(i Ifl) can easily 
be obtained from (10) by substituting b~ for a~, v2~ for v~ and interchanging ai and 
by. 

In a similar way the Coulomb energy may be written as 

Q =  ~ q ( i [ j ) ,  (12) 

where q(i ] j)  = (a~by[vzzla~by). 

It should be stressed that the expression for e(i l j )  is identical with the expression 
for Ee~o~ in the interaction of two helium-like systems. Therefore the contribution 
~(i l j )  can be interpreted as the result of the exchange interaction between the 
orbital a~ of system A and the orbital by of system B. The last three terms in Eq. 
(6) are reponsible for the pair-wise orbital nonadditivity of E~xon. The contribution 
e(ik l J), for instance, can be defined as a three-orbital pair-wise nonadditive part 
of the exchange energy in the interaction between a beryllium-like system, with 
orbitals a~ and a~, and a helium-like system, described by an orbital by. Similarly, 
e(ik I j l )  is defined as a four-orbital contribution to the exchange interaction of two 
beryllium-like systems with orbitals a~, a~ and by, b~. 

It is important to note here, that the expressions (6) and (12) are quite general and 
enable us to expand E~o~ and Q also in terms of shells or other subgroups of 
orbitals. Many-shell contributions can be built up of many-orbital components 
using the method given in Ref. [11]. 

3. Numerical Example: Interaction of Two Neon Atoms 

In our calculations of the first-order energy and its many-orbital components for 
N% system we have used Clementi's SCF orbitals for the Ne atom [14]. Their 
radial parts were approximated in the form of Gaussian expansion 

N 

_ r' c e-% r2, (13) 
/ r  

where l is the angular quantum number. The nonlinear parameters ak and linear 
ones ck have been optimized to obtain the least square fit [15] to cp(r). This ensures 
a faithful representation of HF function at large distances from the nucleus which 
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Table 1. Parameters of Gaussian representations (14) of Clementi's 
Hartree-Fock orbitals [14]. The mean square deviation 3 is defined 
by Eq. (15) 

Function (4/4/4) Function (6/8/8) 

ls  (5 = 11.0~) ls  (5 = 5.0Z) 
0.159277 -0.000021 0.027167 -2 .4  ( -8 )  
0.772291 0.001079 0.168719 -0.000025 
5.175634 0.341560 0.728456 0.000887 

23.578653 7.243614 4.136383 0.132252 
13.292992 2.982685 

125.741670 13.657932 

2s (5 = 8.5%) 2s (5 = 1.0%) 
0.115314 0.000701 0.097661 0.000164 
0.254129 0.033829 0.166164 0.004112 
0.793608 0.500741 0.287921 0.027941 

39.123468 -3.092994 0.443377 0.051872 
0.681464 0.194150 
1.549567 0.484850 

17.926980 - 1.722855 
141.993370 -2.879560 

2p (3 = 9.6~) 2p (3 = 0.5~) 
0.087504 0.001320 0.060449 0.000038 
0.210580 0.052411 0.104132 0.001254 
0.744971 1.056962 0.192142 0.014033 
5.363038 10.726426 0.411053 0.113568 

1.031536 0.586092 
3.194203 2.230887 

13.118573 4.581282 
138.453810 6.081587 

has been shown to be very impor t an t  to obta in  an accurate  value o f  exchange 
energy [6, 16]. 

Two representa t ions  o f  the H F  wave funct ion were used in pract ical  calcula t ions:  
the (6/8/8) fit ( l s  expanded  into 6, 2s into 8 and 2p into 8 Gauss ian  functions) and  
the (4/4/4) fit. The  (6/8/8) funct ion has been used to provide  accurate  values for  
many-orb i t a l  contr ibut ions ,  while the (4/4/4) funct ion to test usefulness o f  shor t  
representa t ions  (14). The la t ter  is impor t an t  f rom the po in t  o f  view o f  pract ical  
computa t ions  for  larger  systems. The parameters  ak and ck o f  bo th  functions have 
been listed in Table  1. To demons t ra te  the aptness  o f  Gauss ian  expansions,  the 
mean  square deviat ion f rom the exact  orbitals ,  defined as 

Jo - 
has been also repor ted  in Table  1. F o r  par t icular  orbi ta ls  the range o f  integrat ion 
R has been chosen so as ]q~(r)] < 10 -8 for  r > R. 
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Table 2. A comparison of the values of the exchange energy E~(~h obtained with (6/4)sTo 
Clementi's wave function and its (4/4/4) and (6/8/8) Gaussian representations. The energy and 
the internuclear distance R are expressed in atomic units 

g (414/4) (618/8) (614)s~o [171 trE (l~ex~b -- E~h) ~ 

4.0 1.1609 ( - 2 )  1.1734 ( - 2 )  1.2367 ( - 2 )  1.53 ( - 4 )  
5.0 1.1397 ( -  3) 1.0161 ( -  3) 1.0650 ( -  3) 8.60 ( -  6) 
5.5 3.2773 ( - 4) 3.0282 ( - 4) 3.1670 ( - 4) 2.29 ( - 6) 
6.0 9.1057 ( -  5) 8.9851 ( -  5) 9.4360 ( -  5) 6.20 (--7) 
7.0 7.3927 ( - 6 )  7.7907 ( - 6 )  8.3211 ( - 6 )  4.67 ( - 8 )  

a Results obtained with (6/8/8) function. 

The  calculat ions  o f  E}~ and its componen t s  have been pe r fo rmed  for  in ternuclear  
dis tances  ranging  f rom 4 a.u. to 7 a.u.,  i.e. in the region close to the  van der  Waa l s  
min imum.  In  Tables  2 and  3, Ee~ch and  Q, compu ted  with the  bo th  wave functions,  
are  c o m p a r e d  with the  results o f  Conway  and  Murre l l  [17], ob ta ined  with the exact  
Clement i ' s  orbi tals .  A t  first, we would  like to po in t  to  the aptness  o f  the (4/4/4) 
funct ion which yields the  results  being less than  10~o in er ror  in the region con- 
sidered. Secondly,  we not ice  tha t  the  results ob ta ined  with the funct ion (6/8/8) are  
un i fo rmly  lower than  the Conway  and Murre l l  values by  abou t  5~ .  Since the values 
o f  3 for  2s and 2p orbi ta ls  are in this case not  higher  than  1~,  this d iscrepancy can 
be a t t r ibu ted  only in pa r t  to the fact  tha t  the  app rox ima te  orbi ta ls  have been used. 
However ,  we should  note  tha t  the  formulae  used in Ref. [17] to calculate  Eexoh 
and Q differ f rom those  used in the present  pape r  by terms due to more  than  single 
exchanges.  We have invest igated the  effect o f  mul t ipole  exchanges and  we have 
found  tha t  E~x~ - E,  xoh amount s  to f rom 1 .3~ at  R = 4 a.u. to 0 . 6 ~  at  R = 7 a.u. 
o f  the  exchange energy (see Table  2). 2 Final ly ,  it  is plausible tha t  the results of  
Conway  and  Murre l l  may  no t  be highly accurate  because of  wel l -known prob lems  
with  very accurate  calculat ions  o f  two-elect ron integrals  over Slater- type orbitals .  

Table 3. A comparison of the values of the Coulomb energy obtained with 
(6/4)sro Clementi's wave function and its (4/4/4) and (6/8/8) Gaussian 
representations. The energy and the interatomic distance R are expressed 
in atomic units 

R (4/4/4) (6/8/8) (6/4)sTo [17] 

4.0 --3.328 (--3) --3.186 (--3) --3.360 (--3) 
5.0 --2.832 (--4) --2.531 (--4) --2.649 (--4) 
5.5 --7.848 (--5) --7.186 (--5) --7.530 (--5) 
6.0 -2.150 ( - 5 )  -2.036 ( - 5 )  --2.148 ( - 5 )  
7.0 -- 1.691 ( - 6 )  -- 1.627 ( - 6 )  - 1.744 ( - 6 )  

This result contradicts the recent assessment of the role of double exchanges in the Ne2 
system made by Gerratt [18], who found them accounting for 18~ of exchange energy at 
R = 5.7 a.u. 
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Table 4. A comparison of the largest individual inter-shell contributions to Coulomb and 
exchange energies (for the (6/8/8) wave function). The interatomic distance R is expressed in 
atomic units, all other quantities in percent 

R 4.0 5.0 5.5 6.0 7.0 

(Q~:[ + Q~)/Q 0.34 0.14 0.11 0.10 0.08 
Q~/Q 99.66 99.86 99.89 99.90 99.92 

A / 3  (E:)~ + Ez~:)/E~,:on 0.48 0.36 0.31 0.27 0.22 
E~2/E~xo~ 96.17 97.19 97.58 97.90 98.36 
(E~ AB + E~BB'~IE 3.35 2.45 2.11 1.83 1.42 KLL LKL J /  e x o h  

In Table 4 we report  the multi-shell partit ioning of  E~xoh and Q. The symbols used 
to denote the particular multi-shell components  are constructed in the same way 
as in Ref. [11]. Since the contributions A~ r'AAB r'ABB ~'AA~B and E~CK, AB QKK amount  ~ K L K ,  ~ K L K ,  ~ K L K L  

to less than 0 .1~ of  Eoxoh and Q respectively, they are omitted in Table 4. Our  
results show that  for all distances considered, both the exchange and Coulomb parts 
of  the first-order energy may be approximated with the accuracy greater than 95~  
by the interaction of  outer shells only. Inclusion of  KL-L  type terms leads to 99~  
accuracy. 

Since the L-shell consists of  four orbitals (2s, 2px, 2py, 2p~ - z denotes axis joining 
A and B) we have made an orbital analysis of  ELaff term decomposing it into com- 
ponents originating from two-, three- and four-orbital constributions 

E~ff = ELL(2) + ELL(3) + ELL(4). (15) 

The contributions o f  particular terms to ELaff have been compared in Table 5. It  
turns out that  the two-orbital contributions account  for only about  10~ of  E~ff 
for all distances considered, while the major  part  of  E ~  (about 90}/0) results, rather 
unexpectedly, f rom the three-orbital interactions. We see that the role o f  the ELL(2) 
term slightly increases with increasing R. The above result disposed us to perform 
a more detailed analysis of  ELL(3) contribution. It  turned out that  the major  par t  
of  ~(ik I j) (and e ( i l j I ) )  results f rom the first term in Eq. (I0), i.e. f rom hybrid 
integrals. Moreover,  we have found that the sum of  terms arising f rom the inter- 
action of  2p~ orbital localized at the A(B) centre with 2s or 2p~ orbital localized at 
the B(A) centre in presence o f  the third orbital of  L-shell at the B(A) centre gives 
a very reliable approximation to ELL(3) (see the last but  one row of  Table 6). 

Table 5. A comparison of many-orbital contributions to exchange interaction of L-shells (for 
the (6/8/8) wave function). The interatomic distance R is expressed in atomic units, all other 
quantities in percent 

R 4.0 5.0 5.5 6.0 7.0 

ELL(2)/E~ 8.03 8.65 9.33 9.97 11.08 
ELL(3)/E~ 93.86 92.30 91.36 90.54 89.22 
ELr(4)/E~ - 1.89 - 0.95 - O. 69 - O. 51 - O. 30 
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Table 6. A comparison of various three-orbital contributions to exchange interaction of L- 
shells and to the exchange energy Eo~oh (for the (6/8/8) wave function). The interatomic distance 
R is expressed in atomic units, all other quantities in percent 

R 4.0 5.0 5.5 6.0 7.0 

4E(2s2p~ [2p~)/E2~ 27.48 26.04 24.80 23.56 21.12 
4,(2p~2p~ 12p~)/E~ 28.40 33.96 36.28 38.32 41.80 
2,(2s2p~ I 2p,)/E~ 29.40 31.62 32.32 33.00 33.82 

~ p p r o x  A B  ELL (3)/ELL 85.28 91.62 93.40 94.88 96.74 
E~~ 85.10 90.53 92.38 93.88 95.79 (ELL(2) + zL ~ J J/ ~xch 

Making use of  the symmetry of the system considered one can write the approximate 
formula as follows: 

E~EPr~ = 4e(2s2px [ 2p~) + 4e(2px2p~ ] 2p~) + 2e(2s2p~ I 2p~). (16) 

The importance of the terms included in (16) seems to be a consequence of large 
integral overlap between 2p~ at one centre and 2p~ or 2s at the other, and large 
differential overlap of atomic orbitals of  the L-shell at the same centre. The relative 
contributions to E ~  from individual terms in (16) have been compared in Table 6. 
In the last row of Table 6 we have tried to reproduce the total exchange energy as 
the sum Ezc(2) + E~Vr~ The result is encouraging: the accuracy proves to be 
better than 85~ within the considered region. It  is worthwhile to note here that 
ELL(2) cannot be approximated by the single term e(2p~ 12p~) because the other 
two-orbital contributions are equally large and of opposite signs. 

Concluding the above analysis, we see that on the basis of  the cluster expansion 
(6) it is possible to introduce the following simplifications in calculations of  the 
first-order exchange repulsion: 

1) Neglect of higher-order exchange terms. 
2) Neglect of  contributions comprising inner-shell orbitals. 
3) Neglect of  four-orbital contributions. 
4) Use of the approximate formula of  the type given by Eq. (16). 
5) Evaluation of some less important terms using shorter expansions (14). 

Application of the approximations 2, 3 and 4 may lead for larger systems to a 
reasonable reduction of the number of  integrals over occupied orbitals whereas 
use of the approximation 5 will decrease the effort needed to calculate some of those 
integrals. 
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